UNCLASSIFIED # AD NUMBER AD092799 **NEW LIMITATION CHANGE** TO Approved for public release, distribution unlimited **FROM** Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; 24 APR 1956. Other requests shall be referred to National Aeronautics and Space Administration, Washington, DC. **AUTHORITY** NASA TR Server website # AUNCLASSIFIED AUGUST TO THE Services Technical Information Algency Reproduced by Reproduced by DOCUMENT SERVICE CENTER KNOTT BUILDING, DAYTON, 2, OHIO This document is the property of the United States Government. It is furnished for the duration of the contract and shall be returned when no longer required, or upon recall by ASTIA to the following address: Armed Services Technical Information Agency, Document Service Center, Knott Building, Dayton 2, Ohio. NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THEREBY INCURS NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO. UNCLASSIFIED ## RESEARCH MEMORANDUM ELEVATED-TEMPERATURE FATIGUE PROPERTIES OF .7 TWO TITANIUM ALLOYS By William K. Rey University of Alabama # NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS WASHINGTON April 24, 1956 NACA RM 56B07 ### NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS ### RESEARCH MEMORANDUM ### ELEVATED-TEMPERATURE FATIGUE PROPERTIES OF TWO TITANIUM ALLOYS By William K. Rey ### SUMMARY An investigation was conducted to evaluate the unmotched fatigue properties of 3Mn Complex and 3Al-5Cr titanium alloys at elevated temperatures. Fatigue studies were conducted for each alloy at room temperature, 200°, 400°, 600°, 800°, and 1,000° F. The results are presented in tabular form and as curves of stress versus cycles to failure for each test temperature. The endurance strength at 10,000,000 cycles for the 3Mn Complex alloy decreased from 79,000 psi at room temperature to 26,500 psi at 1,000° F. The endurance strength at 10,000,000 cycles for the 3Al-5Cr alloy decreased from 91,000 psi at room temperature to 46,500 psi at 1,000° F. The decrease in endurance strength with an increase in temperature is shown by a curve of endurance strength versus temperature for each alloy. ### INTRODUCTION During the past few years metallurgical research has provided the engineer with alloys of titanium that are taking their place as important structural materials. These alloys are of particular interest to the aircraft industry since they possess a unique combination of mechanical properties — lightness, high strength, general resistance to environmental attack, and retention of strength at moderately elevated temperatures. To make the most effective use of these alloys, it will be necessary for the designer to have available the mechanical properties for various types of loading under different environmental conditions. For many applications, the behavior of a material when it is subjected to repeated stressing is of prime importance. This is true since many of the structural components are subjected to repeated loading and unloading. This investigation was undertaken to determine the unnotched fatigue properties of two titanium alloys at temperatures up to 1,000° F because of the potential use of titanium alloys in this temperature range. This investigation was initiated under the sponsorship of the University Research Committee of the University of Alabama and completed with the University Research Committee and the National Advisory Committee for Aeronautics as cosponsors. The University Research Committee supplied funds for the necessary equipment and the National Advisory Committee for Aeronautics furnished the operating funds. The material required for preparation of the test specimens was donated by the Mallory-Sharon Titanium Corporation of Niles, Ohio. ### MATERIAL The alloy designated 3Mn Complex titanium alloy was supplied as hot-rolled and cleaned 1/2-inch-diameter round rod with all material coming from the same heat. The chemical composition by weight of this heat as determined by the Mallory-Sharon laboratory was as follows: | Carbon, percent | • | | • | • | • | | | | | • | | | | • | | • | | | | • | • | • | 0.03 | |---------------------|---|---|----|-------| | Nitrogen, percent . | Hydrogen, percent . | ٠ | • | .• | • | • | • | • | | | | | | • | • | | | | | | | | | 0.012 | | Iron, percent | • | • | ٠ | • | • | • | • | • | • | • | • | | • | | | | • | | | | | • | 0.93 | | Manganese, percent | • | | • | • | | • | • | | • | • | | • | | | | | | | • | • | | | 3.34 | | Chrominum, percent | | | • | • | | • | • | | | | | | | | | | | | | | | | 1.07 | | Vanadium, percent . | 1.03 | | Molybdenum, percent | 1.01 | | Titanium | • | • | | • | | | • | • | • | | • | | | • | • | • | • | • | • | • | | | Bal. | The room-temperature mechanical properties were determined using American Society for Metals standard 5/16-inch tension specimens. These tests were performed in a Baldwin 60,000-pound universal testing machine with a Huggenberger Tensometer used to measure strains. The average room-temperature mechanical properties from three tests were as follows: | Ultimate strength, psi | 147,900 | |--|----------| | Proportional limit, psi | | | Yield strength (0.2-percent offset), psi | 134,750 | | Young's modulus, psi | ,200,000 | | Elongation in 1 inch, percent | 24 | | Reduction of area, percent | 57.8 | | Rockwell hardness | 33.8c | The average tensile stress-strain curve for the 3Mn Complex alloy is shown in figure 1. NACA RM 56B07 The second alloy, which is designated 3A1-5Cr titanium alloy, was also supplied as hot-rolled and cleaned 1/2-inch-diameter round rod with all material coming from the same heat. The chemical composition by weight as determined by the Mallory-Sharon laboratory was as follows: | Carbon, percent . | | | | | | | | | | • | | | | | | | | | | | | | | 0.05 | |-------------------|-------| | Nitrogen, percent | • | • | • | • | • | • | • | | • | | | | • | • | | | | • | • | | | | • | 0.036 | | Hydrogen, percent | Iron, percent | Aluminum, percent | Chromium, percent | • | ٠ | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | | • | • | • | ٠ | 4.94 | | Titanium | Bal. | The room-temperature mechanical properties were determined by the same procedure used for the other alloy. The average room-temperature mechanical properties for the 3Al-5Cr alloy were as follows: | Ulitmate strength, psi | 140,800 | |--|------------| | Proportional limit, psi | 111,800 | | Yield strength (0.2-percent offset), psi | 125,300 | | Young's modulus, psi | 15,500,000 | | Elongation in 1 inch, percent | 21 | | Reduction of area, percent | 57.8 | | Rockwell hardness | 35.5C | The average tensile stress-strain curve for the 3Al-5Cr alloy is shown in figure 2. ### APPARATUS AND PROCEDURE Figure 3 shows the Krouse high-speed, high-temperature, repeated-stress machine used for all fatigue tests. This machine loads the specimen as a simple beam with a constant bending moment throughout the length of the specimen. It is equipped with a Marshall furnace and Foxboro potentiometer controller that permit testing at room temperature and in the range from 200° to $1,800^{\circ}$ F with an accuracy of $\pm 2^{\circ}$ F. Prior to testing, it was necessary to perform a load calibration to determine the load necessary to balance the weight of the driving motors and specimen holders. This was accomplished by using a dummy specimen to which two type A-8 SR-4 electric strain gages were attached. Loads were applied in 1-pound increments and the strains determined for each load. Curves of load versus strain were plotted to determine the tare load. This load calibration was confirmed by testing a number of stainless-steel specimens in this machine and comparing the results with data obtained from another machine. This check showed excellent agreement in the results obtained from the two machines. The furnace temperature is controlled during testing by means of a Chromel-Alumel thermocouple placed at the center of the furnace midway between the specimen and the furnace wall. To determine the correlation between the temperature of this control thermocouple and the specimen temperature, an iron-constantan thermocouple was attached to the center of a specimen. For each of the test temperatures, a series of readings was taken to determine the difference in temperature at the two thermocouple locations. These data showed that after temperature equilibrium was reached there was a maximum of 2° F difference in temperature at the two locations. An additional investigation showed that the temperature was constant throughout the length of the specimen. The dimensions of the specimens used for all fatigue tests are given in figure 4. These specimens were prepared from 1/2-inch-diameter rod and then polished. The machining marks were removed with 3/0 emery cloth, and 400-A Durite paper was used for the final polish. All circumferential scratches were removed by polishing parallel to the longitudinal axis of the specimen while it slowly rotated in a lathe. Approximately 0.002 inch of the material was removed during the polishing operation. The specimens were inserted in the furnace at room temperature and rotated at zero stress while the furnace temperature was increased to the test temperature. The testing temperature was attained in 45 minutes. An additional 15 minutes was allowed to obtain temperature equilibrium before applying the load. All tests were conducted at a speed of 4,800 cycles per minute. The test temperatures were room temperature, 200°, 400°, 600°, 800°, and 1,000° F. ### RESULTS AND DISCUSSION The results of the fatigue tests of the 3Mn Complex alloy are presented in tabular form in table I and as curves of nominal stress versus cycles to failure in figures 5(a) to 5(f). The endurance strengths at 10,000,000 cycles from these curves, are compared in the following table: | Temperature, ^O F | Endurance strength, psi | Endurance ratio | |-----------------------------|-------------------------|-----------------| | Room temperature | 79,000 | 0.53 | | 200 | 65,500 | .44 | | 400 | 64,000 | .43 | | 600 | 55,500 | .38 | | 800 | 45,000 | .30 | | 1,000 | 26,500 | .18 | 5 The endurance ratios in this table were computed as the ratio of the endurance strength at 10,000,000 cycles to the ultimate strength at room temperature. Although this ratio is not the true endurance ratio for the elevated temperatures, it is a measure of the reduction in strength as temperature increases. As shown in the table, the endurance strength decreased from 79,000 psi at room temperature to 26,500 psi at 1,000° F. The reduction in strength is shown graphically by a curve of endurance strength versus temperature in figure 6. The curves of stress versus cycles to failure for the 3Mm Complex alloy exhibit small scatter at room temperature, 200° , and 800° F. While the data at 400° and 600° F show greater scatter, it is not unreasonable. The small number of specimens available for testing at $1,000^{\circ}$ F was due to the limited amount of available material. However, a sufficient number of tests were performed at $1,000^{\circ}$ F to give a reasonable indication of the endurance strength at this temperature. The results of the fatigue tests of the 3A1-5Cr alloy are presented in tabular form in table II and as curves of nominal stress versus cycles to failure in figures 7(a) to 7(f). The endurance strengths at 10,000,000 cycles from these curves are compared in the following table: | Temperature, ^O F | Endurance strength, psi | Endurance ratio | |-----------------------------|-------------------------|-----------------| | Room temperature | 91,000 | 0.65 | | 200 | 84,000 | .60 | | 400 | 79,500 | .56 | | 600 | 73,400 | .52 | | 800 | 62,250 | .44 | | 1,000 | 46,500 | .33 | The endurance ratio was computed as for the 3Mn Complex alloy. The endurance strength decreased from 91,000 psi at room temperature to 46,500 psi at 1,000 F. The curve of endurance strength versus temperature is shown in figure 6. Some of the scatter in the fatigue results may be attributed to the fact that neither material was annealed after rolling. Since the temperature calibration was performed under static conditions, it is possible that the rotation of the specimen produced a small temperature change that would further account for the scatter in the test results. In table III the ratios of endurance strength to weight of the two titanium alloys and four aluminum alloys are compared at four temperatures. The endurance strengths of the titanium alloys at 300° and 500° F were obtained from figure 6 by interpolation. The endurance strengths of the aluminum alloys were obtained from reference 1. This comparison shows that the titanium alloys are superior to the aluminum alloys at all four temperatures on the basis of their ratios of endurance strength to weight. The 3Al-5Cr alloy has a higher ratio of endurance strength to weight at all temperatures than the 3Mn Complex alloy even though it has a lower ultimate tensile strength at room temperature. It is of interest to note that the curves of endurance strength versus temperature have the same shape for both materials. The small reduction in endurance strength for the 3Mn Complex alloy between 200° and 600° F is surprising when compared with the reduction in endurance strength between room temperature and 200° F. In plotting these curves, the room temperature was taken as 75° F. ### CONCLUDING REMARKS Within the limitations of test scatter, the results of a study of the fatigue properties of two titanium alloys show that both of the alloys have potential use in the temperature range investigated. The 3Al-5Cr alloy has a higher endurance strength than the 3Mn Complex alloy at all temperatures considered in this study even though it has a lower ultimate tensile strength at room temperature. A comparison of the two titanium alloys with aluminum alloys shows that the titanium alloys are superior on the basis of their ratios of endurance strength to weight. Further study is needed to complete the evaluation of these alloys. A study of the possible correlation between the endurance strength at elevated temperatures and the stress to rupture at these temperatures would be of value. An investigation of the notch sensitivity at elevated temperatures is also necessary to complete the evaluation for applications involving repeated stressing. University of Alabama, University, Ala., May 12, 1955. ### REFERENCE 1. Anon.: Strength of Metal Aircraft Elements. ANC-5, Munitions Board Aircraft Committee, Mar. 1955. TABLE I.- RESULTS OF FATIGUE TESTS OF 3Mn COMPLEX TITANIUM ALLOY | Specimen | Stress, psi | Cycles to failure | Remarks | |--|--|---|--| | | At ro | om temperature | | | 10F 2
10F 16
10F 15
10F 12
10F 3
10F 4
10F 11
10F 5
10F 6
10F 7
10F 8
10F 10
10F 10 | 100,720
100,280
98,320
98,030
94,270
90,370
87,910
86,320
84,760
82,030
79,980
79,640
79,230
78,460 | 7,300 10,700 16,800 18,500 20,600 28,700 64,800 97,700 61,100 144,900 450,200 21,713,800 340,400 14,347,500 | Did not fail
Did not fail | | | | At 200° F | | | 10F 17 10F 18 10F 19 10F 20 10F 21 10F 22 10F 24 10F 27 10F 26 10F 31 10F 29 10F 28 10F 23 | 83,830
81,070
80,580
76,590
72,320
70,650
69,210
67,430
66,520
65,930
65,900
64,500
64,500
64,230 | 40,100 24,800 47,000 44,400 88,000 318,500 704,800 2,272,100 3,618,100 1,710,000 13,205,100 1,711,900 1,456,500 10,120,800 12,065,200 | Did not fail
Did not fail
Did not fail | | | | At 400° F | | | 10F 38
10F 41
10F 43
10F 39
10F 35
10F 42
10F 44
10F 36
10F 40
10F 40
10F 48
10F 48
10F 49
10F 46
10F 47 | 71,930
70,060
69,980
69,160
68,700
68,010
67,590
66,760
66,400
65,380
65,020
64,670
64,140
64,070
63,020
61,990 | 32,200 165,100 46,500 1,262,100 402,400 38,400 34,300 173,300 80,400 47,800 2,003,500 22,804,000 10,651,900 1,028,200 10,286,600 10,041,700 | Did not fail
Did not fail
Did not fail | TABLE I.- RESULTS OF FATIGUE TESTS OF 3Mn COMPLEX TITANIUM ALLOY - Concluded | Specimen | Stress, psi | Cycles to failure | Remarks | |--|--|--|--------------| | | | t 600° F | | | 10F 51
10F 74
10F 58
10F 57
10F 59
10F 60
10F 61
10F 62
10F 75
10F 64
10F 65
10F 66
10F 67
10F 68
10F 68
10F 69
10F 70
10F 72
10F 52 | 84,060
64,050
63,750
62,870
62,820
62,820
61,530
61,530
60,930
60,490
60,080
59,490
59,460
59,060
57,900
57,250
56,380
54,960 | 4,100 23,200 20,300 135,400 116,200 50,200 30,600 583,900 129,300 156,100 768,200 200,000 1,106,300 305,400 130,700 353,900 1,542,300 2,598,400 3,441,100 12,090,500 | Did not fail | | 101 72 | 43,060 | 12,406,400
t 800° F | Did not fail | | 10F 81
10F 82
10F 83
10F 84
10F 85
10F 86
10F 87
10F 99
10F 91
10F 93
10F 94
10F 92
10F 97
10F 98
10F 98
10F 101
10F 100 | 59,030
57,870
57,000
55,960
55,020
53,880
53,190
52,040
51,020
50,000
49,080
49,080
49,080
47,540
47,540
47,060
46,010
45,460
45,040 | 12,200 16,200 14,800 28,100 28,200 34,400 57,500 61,900 102,500 186,900 138,300 209,700 1,905,300 664,300 652,300 335,700 888,700 1,765,300 10,156,700 | - | | | | 1,000° F | | | 10F 77
10F 78
10F 80
10F 79
10F 102
10F 104
10F 103 | 54,790
34,960
33,500
32,010
31,000
29,000
26,370 | 7,800
214,600
286,100
3,131,000
434,900
1,092,300
12,318,800 | Did not fail | TABLE II.- RESULTS OF FATIGUE TESTS OF 3A-5C TITANIUM ALLOY | Specimen | Stress, psi | Cycles to failure | Remarks | |---|--|--|---| | | At ro | om temperature | | | 6 7 79 4 79 74 79 74 79 74 79 74 75 74 75 75 75 75 75 75 75 75 75 75 75 75 75 | 99,630
98,240
97,000
95,280
95,020
94,460
94,300
94,990
92,870
92,490
91,720
91,450
91,450
91,450
91,220
81,220 | 26,800 19,600 23,200 36,400 29,000 57,100 105,700 1,017,000 12,786,500 57,400 10,083,200 66,300 66,300 65,400 54,600 54,757,300 13,466,000 13,000,000 21,322,500 | Did not fail | | | | At 200 ⁰ F | | | 225265538885748832
55565558865548832
55565558865555885555 | 92,860
90,150
89,290
87,650
87,220
86,000
85,860
85,770
85,490
85,290
85,290
84,860
84,760
84,490
84,010 | 58,300 72,100 84,300 45,900 112,700 57,000 75,600 65,700 77,100 184,200 59,500 14,160,500 71,500 101,549,500 51,800 104,550,400 | Did not fail
Did not fail
Did not fail | | | | At 400 ⁰ F | | | 海海海海海海海海海海海海海海海河外外外海河河 | 89,800
87,860
84,810
84,650
83,870
82,080
81,110
80,870
80,250
79,900
79,230
75,030
74,330
73,240 | 28,200
36,800
93,500
45,200
27,200
72,400
65,200
25,200
99,972,400
2,284,400
2,092,900
22,288,900
12,757,500
14,190,700
19,498,300 | Did not fail | TABLE II.- RESULTS OF FATIGUE TESTS OF 3A-5C TITANIUM ALLOY - Concluded | Specimen | Stress, psi . | Cycles to failure | Remarks | |---|--|--|--| | | A | t 600° F | | | 9F 74
9F 75
9F 62
9F 763
9F 76
9F 64
9F 69
9F 68
9F 66
9F 65 | 76,110 76,070 75,960 75,200 74,930 74,600 74,240 74,140 74,090 73,870 73,690 73,520 72,980 71,750 | 8,183,100 149,300 37,800 76,400 40,000 98,300 4,587,000 4,325,300 34,900 14,190,700 13,093,100 4,663,400 10,216,800 13,975,000 | Did not fail
Did not fail
Did not fail
Did not fail | | | A-I | : 800° F | | | 9F 80
9F 77
9F 82
9F 96
9F 88
9F 88
9F 89
9F 89
9F 89
9F 88
9F 88
9F 88
9F 88 | 74,000
72,990
71,990
71,990
70,040
69,990
68,990
67,960
67,000
66,510
65,990
64,990
64,990
64,010
63,500
63,500
61,990 | 40,300 22,900 27,700 25,600 76,600 19,100 22,800 57,100 26,600 126,000 82,600 148,400 187,200 78,500 90,400 271,200 11,859,200 4,996,500 | Did not fail | | | At | 1,000° F | | | 9F 96
9F 95
9F 97
9F 98
9F 100
9F 101
9F 102
9F 103
9F 99 | 56,990
54,990
53,000
50,510
50,000
49,000
47,490
46,570
45,000 | 42,000
250,500
417,000
481,900
2,406,100
166,200
425,000
12,222,900
11,088,900 | Did not fail
Did not fail | TABLE III. - COMPARISON OF RATIOS OF ENDURANCE STRENGTH^a TO WEIGHT | | Wed ah t | At | room temp. | At 300° | ω ₀ Ω | At 4C | 4000 F | At 500° | хо° F | |--|---------------------------------------|--|--|--|---|---|--|--|--| | Material | lb/cu in. | E-1
O | Fe/W | F _e | Fe/W | 는
의 | Fe/W | 면
e | Fe/W | | 5Mn Ti alloy
5Al-5Cr Ti alloy
2014-T6 aluminum alloy
2024-T4 aluminum alloy
6061-T6 aluminum alloy | 0.170
.166
.101
.000
.098 | 79,000
91,000
24,000
24,000
17,000 | 464,700
548,000
237,600
240,000
173,500
237,600 | 65,000
80,500
15,000
17,000
14,000 | 582,400
484,900
148,500
170,000
112,900 | 64,000
79,500
10,000
13,000
11,000
9,500 | 376,500
478,900
99,000
130,000
112,200
94,100 | 61,500
77,000
7,000
8,500
5,500
8,000 | 361,800
463,900
69,300
85,000
56,100
79,200 | is taken at 10,000,000 cycles. $^{\mathrm{a}}\mathrm{In}$ this table, the endurance strength $^{\mathrm{F}}\mathrm{e}$ Figure 1.- Tensile stress-strain curve for 3Mn Complex titanium alloy at room temperature. Figure 2.- Tensile stress-strain curve for 3Al-5Cr titanium alloy at room temperature. L-92451 Figure 3.- Krouse high-speed, high-temperature, rotating-beam fatigue machine. _---- Figure $\mu_{\bullet-}$ Dimensions of 1/2-inch-diameter rotating-beam fatigue specimen. Figure 5.- Fatigue test results for 3Mn Complex titanium alloy. (b) At 200° F. Figure 5.- Continued. (c) At 400° F. Figure 5.- Continued. (d) At 600° F. Figure 5.- Continued. Cycles to failure (f) At 1,000° F. Figure 5.- Concluded. (b) 3Al-5Cr alloy. Figure 6.- Variation of endurance strength with temperature. (a) At room temperature. Figure 7.- Fatigue-test results for 3A1-5Cr titanium alloy. (b) At 200° F. Figure 7.- Continued. Stress, psi (d) At 600° F. Figure 7.- Continued. (e) At 800° F. Figure 7.- Continued.